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ABSTRACT 

Objectives: Topographical distribution of white matter hyperintensities (WMH) are 

hypothesized to vary by cerebrovascular risk factors. We used an unbiased pattern 

discovery approach to identify distinct WMH spatial patterns and investigate their 

association with different WMH etiologies.  

Methods: We performed a cross-sectional study on participants of the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) to identify spatially distinct WMH distribution 

patterns using voxel-based spectral clustering analysis of aligned WMH probability 

maps. We included all participants from the ADNI Grand Opportunity/ADNI 2 study with 

available baseline 2D-FLAIR MRI scans, without prior history of stroke or presence of 

infarction on imaging. We evaluated the associations of these WMH spatial patterns 

with vascular risk factors, amyloid-β PET, and imaging biomarkers of cerebral amyloid 

angiopathy (CAA), characterizing different forms of cerebral small vessel disease 

(CSVD) using multivariable regression. We also used linear regression models to 

investigate whether WMH spatial distribution influenced cognitive impairment. 

Results: We analyzed MRI scans of 1,046 ADNI participants with mixed vascular and 

amyloid-related risk factors (mean age 72.9, 47.7% female, 31.4% hypertensive, 48.3% 

with abnormal amyloid PET). We observed unbiased partitioning of WMH into five 

unique spatial patterns: deep frontal, periventricular, juxtacortical, parietal, and 

posterior. Juxtacortical WMH were independently associated with probable CAA, deep 

frontal WMH were associated with risk factors for arteriolosclerosis (hypertension and 

diabetes), and parietal WMH were associated with brain amyloid accumulation, 
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consistent with an Alzheimer’s disease (AD) phenotype. Juxtacortical, deep frontal, and 

parietal WMH spatial patterns were associated with cognitive impairment. 

Periventricular and posterior WMH spatial patterns were unrelated to any disease 

phenotype or cognitive decline.  

Discussion: Data-driven WMH spatial patterns reflect discrete underlying etiologies 

including arteriolosclerosis, CAA, AD, and normal aging. Global measures of WMH 

volume may miss important spatial distinctions. WMH spatial signatures may serve as 

etiology-specific imaging markers, helping to resolve WMH heterogeneity, identify the 

dominant underlying pathological process, and improve prediction of clinical-relevant 

trajectories that influence cognitive decline. 

INTRODUCTION 

Cerebral white matter lesions or hyperintensities (WMH) are a highly prevalent 

radiographic phenotype increasingly recognized as a marker of poor brain health,1 

characterized by hyperintense signals on T2-weighted MRI.2 WMH are a cardinal 

manifestation of cerebral small vessel disease (CSVD),2 and a major component of 

vascular contributions to cognitive impairment and dementia (VCID)3 and Alzheimer’s 

disease (AD).4,5 WMH reflect a diverse array of underlying etiologies1,6 that belie their 

homogenous macroscale appearance.4 This heterogeneity poses a significant challenge 

towards disentangling the underlying WMH pathogenesis. Consequently, efforts toward 

identifying WMH features or patterns that are able to discriminate different disease 

etiologies such as AD, vascular-related CSVD (arteriolosclerosis), and amyloid-related 

CSVD (cerebral amyloid angiopathy (CAA)), are needed.3,7 However, prior studies using 

whole-brain, voxel-based comparisons have failed to identify distinct patterns8,9 as they 

require the erroneous assumption of voxel-wise independence, and lack statistical 

power due to high dimensionality and multiple comparison problems.  

Increasing evidence support the hypothesis that WMH location may provide etiological 

information. Neuropathological studies have suggested that different pathological 

processes underlie WMH in different brain regions.1,6 However, WMH is commonly 

assessed by quantifying cumulative burden expressed as total WMH volume (WMHv), 

which eliminates latent spatial specificity and lacks discriminative potential for different 
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etiologies. Beyond global WMHv, studies exploring WMH by spatial location have 

traditionally utilized arbitrarily-defined categories of periventricular and subcortical/deep 

WMH,10,11 or by dividing white matter into different anatomical brain regions (cortical 

lobes)12 or vascular territories.13 While these studies considered the concept of WMH 

spatial heterogeneity, their use of predefined regions of interest or empirically-defined 

visual WMH patterns introduce bias and confound the identification of robust disease-

dependent WMH distribution patterns.  

WMH are associated with cognitive decline but WMH burden correlates inconsistently 

with cognitive impairment. This clinicoradiographic discrepancy is thought to be partly 

influenced by location-specific effects of WMH on different cognitive domains,14,15 which 

may reflect different underlying disease processes and further complicated by the 

frequent co-existence of both AD and CSVD pathologies in the elderly.16  

Here, we conducted a multivariate analysis of WMH spatial distribution using voxel-

based spectral clustering of WMH probability maps to identify distinct WMH patterns. 

This approach addresses prior methodological constraints by preserving localized voxel 

variations without losing voxel-wise interactions, and has been used successfully in 

identifying face17 and regional brain shape variations.18 We hypothesized that data-

driven WMH spatial patterns capture disease-dependent WMH patterns in a robust and 

spatially precise manner that can discriminate different WMH etiologies. The 

establishment of distinct WMH spatial patterns that maps robustly to different WMH 

etiology will improve diagnostic specificity and characterization of WMH. 

 

METHODS 

Study design 

Data utilized in this study were obtained from participants in the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) study (eMethods). ADNI data were downloaded19 in 

September 2019. Briefly, all ADNI participants were between 55-90 years old, had 

completed at least 6 years of education, were English or Spanish speakers, and had no 

significant neurologic disease other than AD. We included all participants with available 
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baseline 3.0T 2D-FLAIR MRI scans, without history of stroke or presence of infarction 

on imaging (n=1,046) for the present analyses. We applied (a) deep learning to 

construct WMH probability maps representing voxel-wise WMH distribution, (b) spectral 

clustering of WMH probability maps to compute data-driven WMH spatial patterns, and 

(c) multivariable regression to examine location-specific relationships with risk factors 

for arteriolosclerosis, CAA, AD, and cognitive impairment. We extracted the following 

variables for our analysis: serial systolic blood pressure, anti-hypertensive medication 

use, diabetes mellitus, hyperlipidemia, smoking, alcohol use, atrial fibrillation, 

cardiovascular disease, APOE genotype, Clinical Dementia Rating (CDR) scores, 

cortical standardized uptake value ratio (SUVR) from amyloid PET, and CAA diagnosis 

from T2*-weighted MRI. 

Standard protocol approvals, registrations, and patient consents 

The ADNI study was approved by the individual Institutional Review Boards of all 

participating institutions, with written informed consent obtained from all study 

participants, and all data were deidentified. 

Image preprocessing and constructing WMH probability maps 

A standardized MRI protocol for image acquisition was implemented across ADNI sites 

and validated across platforms.20 We performed image analysis using baseline 2D-

FLAIR and T1-weighted brain MRIs, with imaging parameters as described (eTable 1). 

We implemented our analytical framework (Figure 1A-D) to extract individual-level 

probabilistic information of voxel-wise WMH distribution in the form of a WMH 

probability map; detailed description provided in eMethods. Briefly, we constructed an 

18-layer convolutional neural network with U-Net21 architecture (eFigure 1) in Python 

using Pytorch to automatically segment WMH and generate participant-specific 2D-

WMH probability maps from 2D-FLAIR scans, which were co-registered to their 

corresponding T1-weighted MRIs, then aligned to a common template space. We 

validated our deep-learning network performance against a reference standard of 

manual WMH segmentations, and the UCD four-tissue segmentation method22 used by 

ADNI on 70 randomly selected ADNI images, divided into training (n=50) and test 

datasets (n=20). The test dataset for final model performance evaluation consisted of 
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hold-out images not used in network training or tuning. Two trained reviewers performed 

manual delineation of supratentorial WMH in accordance with the STRIVE criteria,3 with 

high inter-rater agreement for the manually-derived WMH segmentation in spatial (Dice 

Similarity Coefficient, DSC=0.72; 95% CI=0.67-0.81) and volumetric correspondence 

(Intraclass correlation coefficient (ICC)=0.92). Deep-learning (U-Net) was superior to the 

UCD four-tissue segmentation method across all evaluation metrics, including improved 

spatial accuracy (DSC), sensitivity and specificity in detecting WMH (area under 

precision-recall curve, AUC-PR) (eTable 2). Small lesion size and burden reduce WMH 

segmentation accuracy,23 creating detection bias for larger, confluent WMH. Our U-Net 

algorithm maintained high segmentation accuracy across a range of WMH burden 

(eFigure 2, eTable 3). Visual comparisons of the different segmentation methods are 

shown in eFigure 3. 

Data-driven WMH phenotyping, identifying distinct WMH spatial localizations 

Aligned WMH probability maps (voxel size 1x1x1) were uniformly down-sampled by a 

factor of 2 and voxels with population-wise WMH probability <1% were excluded to 

improve computational efficiency, generating a WMH probability feature vector length of 

30353 per participant. We applied spectral clustering to the entire analysis cohort 

(n=1,046) to identify distinct spatial clusters of WMH using a custom script24 in MATLAB 

(2019a, Natick, Massachusetts: The MathWorks Inc.) (Figure 1E). Aligned WMH 

probability maps were jointly analyzed by concatenation into n channels, each voxel as 

a vector with n values of WMH probability. Similarity measures between ij voxel-pairs 

were calculated as a Gaussian kernel function (σ=16) of the Euclidean distance 

between their WMH probability feature vectors forming an ijn affinity matrix, M. Laplacian 

transformation was applied to matrix M prior to Eigen-decomposition of the squared 

matrix followed by k-means clustering to group highly correlated voxels, then mapped 

back to common template space to visualize spatial clusters of WMH. This result in 

partitioning of the white matter into a map of k data-driven WMH spatial patterns. To 

estimate the optimal number of non-overlapping clusters (k), we applied the eigengap 

method to identify k corresponding to the maximal difference between consecutive 

eigenvalues of the Laplacian. Finally, this map was warped into individual participant 



 

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

space to calculate WMH burden (volume of voxels with WMH probability threshold of 

≥0.5) for each k data-driven WMH spatial pattern. 

MRI-based CAA assessment 

Two trained reviewers assessed blood-sensitive T2*-weighted MRIs for strictly lobar 

cerebral microbleeds (SL-CMB) and cortical superficial siderosis (cSS) to ascertain CAA 

diagnosis by the Modified Boston criteria.25 We carefully excluded microbleed mimics, 

including vessels, flow voids, and calcification. We reassessed 50 randomly selected 

scans for intra-rater reliability (K=0.91; 95% CI=0.88-0.94) and inter-rater reliability 

(K=0.85; 95% CI=0.82-0.90). 

Amyloid-related biomarkers 

Brain amyloid had been quantified by 18F-florbetapir (FBP) AV-45 PET summary data 

obtained from the ADNI database. Detailed acquisition and standardized processing 

methods were previously described.26 Briefly, FBP PET analyses utilized FreeSurfer 

v4.5.0 segmentation of a contemporary co-registered MRI to define cortical regions of 

interest that commonly harbor Aβ.26 We defined global Aβ burden based on a composite 

SUVR of weighted FBP mean uptake across four cortical regions (frontal, lateral 

temporal, lateral parietal and cingulate) normalized to the whole cerebellum uptake, 

calculated from FBP PET performed within 1 year of study participants’ baseline FLAIR 

MRI. 

APOE genotyping was performed using DNA extracted from leukocytes collected from 

ADNI participants,27 and finalized, quality-controlled data were obtained from the ADNI 

database. APOE genotype (available for n=967) was analyzed as a categorical variable 

indicated by the number of ε2 and ε4 alleles (0,1, or 2).  

Assessment of cognitive impairment 

We used CDR scores assessed within 6 months of baseline FLAIR MRI as a measure 

of cognitive impairment. The CDR is a well-validated instrument for staging dementia 

severity into a 5-point scale: 0, no cognitive impairment; 0.5, very mild dementia; 1, mild 

dementia; 2, moderate dementia; 3, severe dementia. Due to extremely low numbers of 
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study participants with CDR≥2 (n=2), we analyzed CDR as a categorical variable 

indicated by CDR 0, 0.5, and ≥1.  

Non-amyloid/vascular risk factors 

We obtained vascular risk factors most relevant to cerebrovascular disease for our 

study participants including type 2 diabetes mellitus, atrial fibrillation, history of 

cardiovascular disease (coronary heart disease, cardiac failure, or intermittent 

claudication), smoking status, alcohol use, and hyperlipidemia by screening the general 

health evaluation data in ADNI. We calculated the average systolic blood pressure 

(SBP) from brachial artery SBP measurements collected during each study visit and 

screened for antihypertensive medication use to construct a composite hypertension 

score (HTN-S; range 0-10) derived from the Framingham Risk Score28 to quantify 

subject-specific hypertension risk (eTable 4). 92.8% of study participants had ≥2 study 

visits (median (interquartile range, IQR) =5 (4-6)).  

Statistical analysis 

All statistical analyses were performed with R v4.0.3. For each k WMH spatial pattern, 

we normalized their territorial WMHv by the total WMHv to describe a relative WMH 

burden (WMHvrel) per pattern. We transformed WMHvrel for each WMH spatial pattern 

using rank-based inverse normal transformation to normalize their distributions. We 

examined associations of the WMH spatial patterns with different CSVD pathologies 

using a multivariable linear regression model for each WMH spatial pattern as outcome 

(WMHvrel for each pattern), and arteriolosclerosis-related (HTN-S and diabetes mellitus) 

and amyloid-related (CAA, amyloid SUVR, and APOE ε4 genotype) CSVD risk factors 

as predictors (resulting in 5 models). We investigated for interaction effects of CSVD 

risk factors on the WMH spatial patterns with linear regression models including HTN-

S*diabetes mellitus, HTN-S*CAA, and HTN-S*amyloid SUVR interaction terms. 

Similarly, we assessed for pattern-specific WMH effects on cognitive impairment with 

CDR at time of imaging. All regression models were adjusted for age, sex, race, and 

other vascular risk factors including hyperlipidemia, smoking status, alcohol use, atrial 

fibrillation, and cardiovascular disease. Regression models for cognitive status were 
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separately adjusted for years of education. Significance threshold was set at Bonferroni-

corrected p<0.01. 

Data availability 

All relevant source data are available from ADNI.19 Relevant image IDs are provided in 

the Supplement (eTable 5). The derived data supporting the study findings are available 

upon request for the express purpose of reproducing the results. 

 

 

RESULTS 

There were 1,067 participants with available 2D-FLAIR sequence, but 21 were excluded 

due to missing clinical data, presence of infarct on imaging, or failing subsequent image 

quality screening (Figure 2). Our final cohort comprised 1,046 participants (mean age 

72.9 years (SD 7.6); 47.7% female; 93.3% White) from ADNI with mixed CSVD (31.4% 

with hypertension; 13.0% with CAA) and AD pathology (48.3% with abnormal amyloid 

PET). Characteristics of the study cohort are shown in Table 1.  

Identification of data-driven WMH spatial patterns 

We identified five WMH clusters representing five distinct, non-overlapping WMH spatial 

patterns (Figure 3) in our study cohort. The optimal number of clusters, k=5 was 

determined using the eigengap method, representing the maximum difference between 

consecutive eigenvalues (eFigure 4). We validated the robustness of the WMH spatial 

patterns through repeated clustering experiments with bootstrap resampling and 

quantified the extent of spatial overlap (0<DSC<1; 0, no overlap; 1, perfect overlap) for 

the resulting WMH clusters between pairs of repeat clustering attempts. The WMH 

spatial patterns were highly reproducible, with high median overlap (DSC1=0.90, 

DSC2=0.96, DSC3=0.89, DSC4=0.88, DSC5=0.92) (eTable 6). Furthermore, voxel-

based spectral clustering partitioned WMH into recognizable spatial distributions: the 

first involved the juxtacortical region in the intersection between cortical gray and white 

matter (WMH-J, green in Figure 3A), the second location was in the deep frontal WM 
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region (WMH-D, yellow in Figure 3A), the third specified a narrow area surrounding the 

ventricles mostly involved the frontal and occipital horns of the lateral ventricles (WMH-

PV, blue in Figure 3A), the fourth location involved deep white matter in the dorsal 

parietal region (WMH-Pa, red in Figure 3A), and the fifth mainly involved subcortical 

white matter in the occipital lobe including the splenium (WMH-Post, orange in Figure 

3A). 

We created a territorial map of the five WMH spatial patterns identified, registered each 

participant’s WMH probability map in standard space and calculated their WMHvrel for 

each WMH spatial pattern. The median total WMHv was 13.2 cm3 (interquartile range 

(IQR): 7.9–22.5). The WMHvrel distributions of the five WMH spatial patterns are 

summarized in Figure 4. Periventricular and posterior WMH patterns were ubiquitous 

across all participants (median WMHvrel (IQR): WMH-PV= 46.6% (35.8-58.2%), WMH-

Post=15.2% (8.4-24.3%)), while being less common for juxtacortical, deep frontal, and 

parietal WMH patterns (median WMHvrel (IQR): WMH-J=3.7% (1.7-7.5%), WMH-

D=12.8% (6.8-21.3%), WMH-Pa=8.5% (3.1-15.7%)). 

Associations with CSVD etiologies 

In multivariable linear regression analysis, there were significant associations between 

age and relative WMH burden for all WMH spatial patterns, with highest coefficients for 

deep frontal and parietal patterns (WMH-D: β=0.06, p<2e-16, WMH-Pa: β=0.05, p<2e-16), 

whereas the proportion of periventricular WMH pattern decreased relative to the other 

spatial patterns with age (β=-0.02, p<7.3e-5). In contrast, we found differential 

associations of the WMH spatial patterns with amyloid SUVR, CAA, and vascular risk 

factors. Higher relative WMH burden in the juxtacortical pattern was independently 

associated with probable CAA diagnosis (β=0.37, p<5.9e-4) and amyloid SUVR (β=0.45, 

p<2.3e-3). Consistent with this finding, regions of greatest SL-CMBs density overlapped 

spatially with the juxtacortical WMH pattern (Figure 5). In a similar multivariable linear 

regression model, amyloid SUVR was the only independent predictor associated with 

increased relative WMH burden in the parietal pattern (β=0.59, p<9.2e-5). Greater 

relative WMH burden in the deep frontal pattern was independently associated with only 

HTN-S and diabetes mellitus (β=0.06, p<3.9e-5 and β=0.26, p<5.0e-3, respectively). 
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WMH burden in both periventricular and posterior patterns were not related to any 

CSVD risk factors in multivariable regression models. The number of APOE ε2 and ε4 

alleles was not associated with relative WMH burden in any of the identified WMH 

spatial patterns. The results are summarized in Figure 3 and diagnostic regression 

plots for the separate models are shown in eFigure 5. The associations of WMH-J with 

probable CAA, WMH-D with HTN-S, and WMH-Pa with amyloid SUVR remained 

significant after adjustments for CDR (n=930, eTable 7). No significant interaction 

effects were observed between individual CSVD-related risk factors and the WMH 

spatial patterns (eTable 8).  

Associations with cognitive impairment 

Higher global WMH burden was associated with increased cognitive impairment 

measured by CDR (median WMHv (IQR) in cm3: CDR 0=12.7 (7.8-19.9), CDR 0.5=13.0 

(7.7-23.2), CDR ≥1=20.5 (13.8-28.2); p=2.3e-6) (eFigure 6). However, we found 

location-specific effects of WMH on cognitive decline in the subset of study cohort 

(n=945) with CDR assessments completed near time of MRI (Table 2). Increased 

relative WMH burden in both juxtacortical and parietal patterns were independently 

associated with dementia (CDR ≥1: β=0.32, p<6.4-3 for WMH-J; β=0.35, p<3.0-3 for 

WMH-Pa). Higher relative WMH burden in the deep frontal pattern was associated with 

mild cognitive impairment (CDR =0.5: β=0.21, p<8.1-3; CDR ≥1: β=0.59, p<1.2-7). We 

did not find an association between WMH burden in either periventricular or posterior 

patterns with cognitive impairment. In a sensitivity analysis, the pattern of associations 

was unchanged with inclusion of education years as a marker of brain resilience 

(eTable 9).  

 

DISCUSSION 

We applied multivariate voxel-based spectral clustering to FLAIR MRIs of a cohort of 

well-characterized elderly, stroke-free participants from ADNI with mixed pathologies of 

CSVD and AD to identify disease-dependent WMH distribution patterns. Using an 

unbiased approach, we identified five distinct WMH spatial patterns: (i) juxtacortical, (ii) 
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deep frontal, (iii) periventricular, (iv) parietal, and (v) posterior, and demonstrated that 

these data-driven WMH spatial patterns reflected regional susceptibility to different 

underlying disease etiologies. While we found a shared influence of age on all WMH 

spatial patterns, specific CSVD risk factors were independently associated with different 

WMH spatial patterns. Increased juxtacortical WMH pattern was independently 

associated with a greater likelihood of probable CAA and brain amyloid accumulation, 

suggesting juxtacortical WMH as a spatially-specific marker of cerebrovascular amyloid 

load or CAA-related leukoaraiosis. Elevated composite hypertension score and diabetes 

mellitus, risk factors highly associated with arteriolosclerosis, were both related to 

increased deep frontal WMH pattern. Elevated brain amyloid load had the greatest 

influence on increased parietal WMH pattern. In contrast, periventricular and posterior 

WMH patterns were not associated with any risk factors except for age. Further, greater 

relative WMH burden within the juxtacortical, deep frontal, and parietal patterns were all 

associated with increased likelihood of cognitive impairment whereas periventricular 

and posterior WMH patterns did not influence cognitive status.  

Our findings that spatially distinct patterns of WMH distribution are associated with 

different underlying WMH etiologies are consistent with circumstantial evidence from 

prior studies. Using predefined qualitative WMH patterns, Charidimou et al.11 noted a 

divergence in WMH pattern topography between patients with primary intracerebral 

hemorrhage (ICH) due to hypertension (HTN) versus CAA. Peri-basal ganglia WMH 

were more prevalent amongst patients with HTN-ICH, whereas multiple subcortical 

spots pattern of WMH was more common in the CAA-ICH group.11 Recently, several 

studies separately suggested an association between frontally located WMH with 

hypertension,29 increased vascular risk,30 and vascular dementia.31 Other studies have 

noted an association between posteriorly located WMH with both AD-related cognitive 

dysfunction,32 and PET-based amyloid positivity.30 In a longitudinal study investigating 

the relationship between WMH by lobar regions and incident dementia, only parietal 

WMH was associated with increased risk of AD.5 This posterior WMH predilection was 

also seen in familial AD. A study involving asymptomatic autosomal dominant AD 

mutation carriers demonstrated greater WMH burden in the posterior periventricular 

regions involving both parietal and occipital lobes compared to noncarrier controls.33 
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With a single exception,29 these studies all utilized empiric WMH categories or 

arbitrarily-defined regional boundaries that varied in anatomical definitions between 

studies.10-15,34 Indeed, the traditional deep and periventricular WMH showed discordant 

associations with various risk factors and cognitive correlates across studies35 in part 

due to inconsistent definitions of deep and periventricular subdivisions.1,35 Our study 

instead utilized an unbiased method to partition WMH and systematically define WMH 

pattern distributions, whose boundaries were specified by the spatial localizations of 

highly correlated clusters of WMH probability voxels across individuals.  

A particularly striking finding was that several of these data-driven WMH patterns 

specified spatial locations which were consistent with known anatomic localizations of 

distinct disease pathologies, strengthening their robustness and specificity as 

discriminative biomarkers of different WMH etiology. Previous studies reported an 

association between CAA and posterior WMH.36 In contrast, the juxtacortical pattern of 

CAA-related WMH in our study is more consistent with neuropathological studies that 

showed similar topography of the leptomeningeal microvasculature. These vessels, 

most affected by CAA,37 perfuse cortical-subcortical regions in the frontal, parietal, 

occipital, and lateral temporal lobes.37 Indeed, this juxtacortical location overlapped with 

areas of high SL-CMBs density (Figure 5), the radiological hallmark of CAA,37 and 

observed spatial increase in PET-based amyloid burden in individuals with probable 

CAA.38 Studies using high-resolution MRI also demonstrated co-localization of enlarged 

centrum semiovale perivascular spaces,39 another CAA imaging marker, with greater 

CAA severity by imaging and histopathology also within the juxtacortical region.39,40 The 

positive association between juxtacortical WMH pattern and cognitive impairment is also 

consistent with findings from autopsy and prospective cohort studies of CAA patients 

that suggest high prevalence of cognitive dysfunction in CAA with a cognitive profile of 

impaired processing speed and executive dysfunction,41 distinct from AD. 

Likewise, deep frontal WMH pattern was strongly associated with risk factors for 

arteriolosclerosis (hypertension and diabetes mellitus) in our study. Several studies 

which examined regional rather than global WMH load independently observed positive 

associations between frontally located WMH with traditional vascular risk factors, 
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particularly driven by hypertension, and risk of vascular-related cognitive decline.29-31 

This location share the largest spatial overlap with our observed arteriolosclerosis-

related WMH spatial pattern predominantly involving the frontal subcortical white matter. 

The distinct vulnerability of frontal subcortical white matter to hypertension29,31 may be a 

consequence of the regional vascular blood supply, comprising territories of the distal 

branches of the superficial perforating arteries of the anterior and middle cerebral 

arteries, which are prone to development of arteriolosclerosis. Moreover, a recent study 

investigating regional variation in WMH pathology using human postmortem brain tissue 

observed that arteriolosclerosis was the main driver of frontal WMH development,42 

which corresponds with our observation of a distinct arteriolosclerosis-related WMH 

distribution pattern involving the frontal subcortical white matter.  

We also identified a parietal WMH pattern that was strongly associated with increased 

brain cortical Aβ load and cognitive impairment, biomarkers characteristic of preclinical 

amyloid pathology and AD.43 Although several studies have suggested an association 

between global WMH burden and increased Aβ, many others showed no relationship 

between total WMHv and brain amyloid uptake.44 Conversely, studies which explored 

regional WMH effects showed convergent observations of WMH located in posterior 

brain regions being associated with elevated brain Aβ deposition in sporadic AD.32,33 

Our observation of an AD-associated WMH pattern involving the parietal white matter 

corresponds with prior studies demonstrating association of parietal WMH with both AD 

risk and progression,5,33 Further support for parietal WMH as an AD-related 

leukoaraiosis pattern is evidenced by histological findings of degenerative axonal loss 

secondary to AD pathology in the absence of arteriolosclerosis specifically within 

parietal white matter lesions in AD.45 It is interesting that our proposed AD-related WMH 

location involving the parietal subcortical white matter overlap with the stereotypical 

temporoparietal cortical pattern46 of amyloid pathology in AD, and supports the 

suggestion that white matter tracts originating from neurons affected by Aβ deposition in 

the overlying cortex may be vulnerable to Wallerian degeneration-associated axonal 

damage triggered by the cortical AD pathology.45  
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An interesting finding was the delineation of periventricular WMH pattern as 

periventricular caps around the frontal and posterior horns of the lateral ventricles with a 

thin lining along the lateral venticles,47 which was not associated with any disease risk 

factors examined or cognitive impairment. The periventricular cap pattern of WMH is a 

common finding on cranial MRI in the elderly,47 postulated to be distinct from CSVD-

related WMH and related to normal aging,48 consistent with our observation of a singular 

association with age. WMH in this region has characteristic histology of spongiotic, 

finely textured myelin and accumulation of interstitial fluid within the adjacent white 

matter and sub-ependymal widening of the extracellular space around the lateral 

ventricle horns.48 A quantitative MRI study measuring brain water content identified the 

periventricular caps as having significantly higher water content compared to normal 

white matter,47 further supporting our periventricular WMH pattern as a distinct white 

matter region. Similarly, we also identified a posterior WMH pattern associated with age 

but not with any disease risk factor or cognitive impairment. Given that this white matter 

region is immediately adjacent posteriorly to the periventricular caps, we speculate that 

the corresponding WMH may represent a late-stage progression of periventricular caps 

expanding into the potential space surrounding the occipital horn of the lateral 

ventricles. Of note, this hypothesis may be borne out by the opposing relationship of 

relative WMH burden within these two patterns with time (represented as age). Relative 

WMH burden within the periventricular pattern decreased with age, but increased over 

time in the posterior pattern, suggesting that periventricular WMH occurrence likely 

preceded development of posterior WMH. 

This analysis expands on prior studies examining WMH spatial heterogeneity by 

utilizing a data-driven approach to define distinct WMH spatial patterns which represent 

different WMH etiologies: arteriolosclerosis, CAA, AD, and normal aging. Similar studies 

using unbiased definitions of regional WMH are rare – a single prior study29 used 

advanced structural covariance analysis and produced WMH subdivisions with 

anatomic localizations which were less specific for CSVD subtypes. In contrast, our 

study identified WMH regional definitions which demonstrated significant 

correspondence with various radiologic, histopathologic, and epidemiologic correlations 

across the spectrum of CSVD and AD pathology in existing literature. Additional 
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strengths of our work include our inclusion of a large, well-phenotyped population-based 

cohort with mixed CSVD etiologies and AD, which allowed for more comprehensive 

definition of distinct WMH localizations, and quantification of lobar CMBs for 

assessment of CAA. 

Despite the above strengths, our study has several limitations. First, our study cohort 

from ADNI creates a relatively biased sample of older individuals with increased 

preponderance of amyloid-related pathology and less traditional vascular risk factors, 

especially hypertension, which may be less representative of the general population. 

However, bias towards amyloid-related pathology were reduced by the mixed nature of 

our study cohort that included cognitively normal individuals, as reflected by a similar 

prevalence in CAA-related imaging markers in our study population as compared to the 

estimated prevalence in the general population.49 Second, our analysis did not include 

assessment of MRI-visible perivascular space burden as another CSVD biomarker, 

which were previously reported to have topographically-specific distributions 

representing different CSVD microangiopathies.50 Third, we did not perform external 

validation on an independent dataset with different population characteristics. Further 

confirmation of our findings through repeated assessments in other, diverse populations 

comprising ischemic and/or hemorrhagic stroke, AD and CAA cohorts will be needed to 

demonstrate generalizability of our findings. Fourth, we did not explore cognitive profiles 

for the WMH spatial patterns in this study. We hypothesize that specific WMH spatial 

patterns are associated with different cognitive correlates, which would be the basis for 

future work. Fifth, study variables were restricted to those collected by the relevant 

ADNI study phases, and as such we did not include other modifiable risk factors for 

WMH such as inflammation or tau PET, which were not performed for ADNI GO/2. 

Sixth, we assumed that the WMH occurrence can be decomposed into highly 

nonoverlapping clusters, where each cluster groups voxels with high similarities across 

the population. As typical for all clustering methods, it was crucial to specify the number 

of clusters, k, for grouping. For this unsupervised approach, this was the only decision 

that we have imposed, and this number was subsequently rigorously examined to 

ensure the optimal k was selected. 
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In this work, we performed an unbiased classification of WMH into five, non-

overlapping, spatial patterns using voxel-based spectral clustering of WMH probability 

maps. We observed differential associations between each WMH spatial pattern and 

vascular and amyloid-related risk factors. We demonstrated that the development of 

WMH burden across the supratentorial brain is not homogenous, and spatial specificity 

of WMH reflect differential regional white matter vulnerability to injury from different 

disease pathologies. We observed WMH pattern-specific correspondence with cognitive 

impairment, a novel finding. We showed that our data-driven WMH spatial patterns may 

represent WMH spatial signatures that can distinguish between arteriolosclerosis-

related CSVD, CAA, Alzheimer’s disease, and normal aging. This opens the path for 

new investigations using these WMH spatial patterns as etiology-specific imaging 

markers to help resolve WMH heterogeneity and improve understanding of the 

underlying mechanisms driving WMH development, help inform interpretation of clinical 

MRI scans as to the dominant underlying pathological process, and predict clinically-

relevant trajectories that may impact disease and cognitive outcomes.  
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FIGURES 

Figure 1. Methodological sequence for identifying data-driven WMH spatial 

patterns.  

A Image analysis pipeline include standard preprocessing of both FLAIR and 

corresponding T1-weighted MRI data, B image-level harmonization to account for batch 

effects, C automated WMH segmentation using a custom deep learning network (U-

Net), D alignment to standard brain template to ensure cohort-level spatial 

correspondence of the WMH probability maps, and E voxel-based spectral clustering of 

aligned WMH probability maps. 
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Figure 2. Flowchart of study participants and analysis framework.  

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative public database; 

CSVD, cerebral small vessel disease; WMH, white matter hyperintensities; GRE, T2*-

gradient echo sequence; CMB, cerebral microbleeds; cSS, cortical superficial siderosis; 

SBP, systolic blood pressure; HTN, hypertension; SUVR, standardized uptake value 

ratio; WMHv, WMH volume; INT, inverse normal transformation; CDR, clinical dementia 

rating scale. 



 

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

 

 

 

 

 

 



 

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 

 

 

 

 

 

 

 

 

 

Figure 3. Data-driven WMH spatial patterns define distinct disease etiologies.  

A Topographical distribution of the data-driven WMH spatial patterns identified using 

spectral clustering of study cohort WMH probability maps. B Associations between 

data-driven WMH spatial patterns and vascular and amyloid-related risk factors. 

Multivariable linear regression models were used with relative WMH burden for each 

data-driven WMH spatial pattern as outcomes, composite hypertension score, diabetes 

mellitus, amyloid SUVR, and CAA diagnosis as predictors, adjusted for age, race, sex, 

smoking status, current alcohol use, cardiovascular disease, atrial fibrillation, 

hyperlipidemia, and APOE genotype.  

*significance (bold) at Bonferroni-corrected level p<0.01.  

 α composite hypertension score  

Abbreviations: CAA, cerebral amyloid angiopathy; SUVR, standardized uptake value 

ratio; CDR, clinical dementia rating scale; CSVD, cerebral small vessel disease; WMH, 

white matter hyperintensities; ββββ, beta-coefficient. 
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Figure 4. Distribution of the data-driven WMH spatial patterns.  

A-E Density plots showing the distribution of relative WMH burden (WMHvrel) for each 

WMH spatial pattern 
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Figure 5. Spatial correspondence of the juxtacortical WMH spatial pattern and 

strictly lobar cerebral microbleeds.  

The strictly lobar cerebral microbleeds (SL-CMBs) frequency map has a range of values 

from 0 to 4.4%. Areas of highest SL-CMBs density were located within the 

topographical distribution of the juxtacortical WMH pattern (green). 
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Table 1. Clinical characteristics of study population from ADNI 

Characteristic n = 1,046 
Age, y, mean (SD) 72.9 (7.6) 
Sex, Female, n (%) 499 (47.7) 
Race, n (%)  

White 976 (93.3) 
Black 50 (4.8) 
Asian 20 (1.9) 

HTN-S, median (IQR) 4 (3 – 6) 
Systolic blood pressure, mmHg, median (SD) 133.0 (13.0) 
Antihypertensive medication, n (%) 463 (44.3) 
Hypertension, n (%) 328 (31.4) 
Hyperlipidemia, n (%) 448 (42.8) 
Diabetes mellitus type 2, n (%) 117 (11.2) 
Cardiovascular disease, n (%) 143 (13.7) 
Atrial fibrillation, n (%) 39 (3.7) 
Smoking, n (%) 421 (40.2) 
Alcohol use, n (%) 48 (0.05) 
Total WMH volume, mL, median (IQR) 13.2 (7.9 – 22.5) 
CAA, n (%)  

Probable (≥ 2 lobar CMB or 1 lobar CMB plus cSS) 51 (4.9) 
Possible (1 lobar CMB or cSS) 85 (8.1) 

APOE ε4, n (%)a  
1 allele 287 (36.4) 
2 allele 73 (9.3) 

APOE ε2, n (%)a  
1 allele 77 (9.8) 
2 alleles 3 (0.4) 

Amyloid SUVR, mean (SD)b 1.2 (0.2) 
Abnormal amyloid PET (SUVR ≥1.1), n (%)  505 (48.3) 
CDR, n (%)b  

0 321 (34.0) 
0.5 540 (57.1) 
≥1 84 (0.1) 

Education, y, median (SD) 16.0 (2.7) 
Diagnosis in ADNI, n (%)  

Cognitively normal 346 (33.1) 
Mild cognitive impairment 529 (50.6) 
Dementia 166 (15.9) 

 
a APOE genotype was available for 967 (92.4%) participants  
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b Amyloid PET and CDR were available for 945 (90.3%) participants 

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; HTN-S, composite 

hypertension score; IQR, interquartile range; WMH, white matter hyperintensity; CAA, 

cerebral amyloid angiopathy; CMB, cerebral microbleed; cSS, cortical superficial 

siderosis; SUVR, standardized uptake value ratio; CDR, clinical dementia rating 

 

 

Table 2. Associations between the data-driven WMH spatial patterns and 

cognitive status. 

 CDR ββββ SE p 
Cognitive status: Clinical Dementia Rating scale, CDR 
Model: Linear regression models were used independently for each WMH spatial 
pattern using CDR group categories jointly as predictors (CDR =0.5, CDR ≥1) versus 
normal cognition (CDR =0), relative WMH burden as outcome 

Juxtacortical localization 0.5 0.10 0.07 0.15 
 ≥ 1 0.32 0.12 6.38e-3* 

Deep frontal localization 0.5 0.21 0.06 8.11e-4* 
 ≥ 1 0.59 0.11 1.15e-7* 

Periventricular localization 0.5 -0.09 0.07 0.21 
 ≥ 1 -0.28 0.13 0.03 

Parietal localization 0.5 -0.02 0.07 0.75 
 ≥ 1 0.35 0.12 3.03e-3* 

Posterior localization 0.5 -0.10 0.07 0.19 
 ≥ 1 0.14 0.13 0.28 

 

Models were adjusted for age, sex, race, amyloid-related and vascular risk factors 

including hypertension score, diabetes mellitus, hyperlipidemia, cardiovascular disease, 

atrial fibrillation, smoking, alcohol use, CAA diagnosis, APOE genotype, amyloid SUVR. 

*significance (bold) at Bonferroni-corrected level p<0.01 

Abbreviations: ββββ, beta-coefficient; SE, standard error 
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